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Generalized Geometric Analysis of Right Circular Cylindrical
Star Perforated and Tapered Grains

Andrea Ricciardi*
Agenzia Spaziale Italiana, Rome, Italy

This paper describes criteria and formulas adopted in developing a mew computer program capable of
evaluating the geometric evolution of a cylindrical star grain during its combustion. This computer program,
named STAR, calculates the burning perimeter (or burning area), the wet perimeter, and port area as functions
of burnt thickness for a cylindrical internally cone-shaped star grain. The star configuration is defined by seven
geometric parameters. These parameters can be changed along the star grain in order to simulate different
internal geometric shapes. The program does not utilize a lot of computer time and it is capable of analyzing a
large number of star configurations for each run. This is very useful for a geometric optimization process of the
star grain. The program output is organized in a file that can be directly used as an input file for the internal

ballistic program.

Nomenclature
A, = burning area
A, =port area
N = number of star points
P, = burning perimeter
P, = wet perimeter
r = fillet radius
r; = cusp radius

R = grain outside radius

W = web thickness in the cylindrical sector
W, = variable web burnt

€ = angular fraction

£ = star angle

1 = star point semiangle

Introduction

HE computer program STAR was developed in order to

evaluate the geometric evolution of a cylindrical star grain
during its combustion. The star grain configuration considered
is defined by the following seven independent geometric
parameters: grain outside radius R, number of star points N,
web thickness W, fillet radius r;, cusp radius r,, star angle &,
and star point semiangle . Sometimes instead of £, it is pre-
ferred to use a dimensionless parameter ¢ =£/(n/N) named
angular fraction.!-¢

The program is capable of considering two different config-
urations of the star point: 1) convex star point, and 2) concave
star point, as shown in Fig. 1. The values of these parameters
can be changed within large ranges, so that a very large num-
ber of star configurations can be drawn.

Based on the different geometric evolutions of the star dur-
ing the web combustion, 16 configurations can be recognized:
8 with convex points and 8 with concave points. Analyzing the
geometric evolutions of these 16 configurations, some web
intervals were identified, named zones, in which burning
perimeters, wet perimeters, and port areas can be evaluated,
during the web consumption, by means of the same formulas.

As we can see in the next section, some of these zones can be
found in more than one of the 16 configurations during their
evolution.
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The total number of zones is 14; for each of them a program
subroutine was dedicated to evaluate P,, P,,, and A4, vs web.
Clearly, these subroutines are called only by the configurations
that need them.

The STAR program can run in two different ways:

1) Analyzing one star configuration at a time, evaluating
P,, P, and A, as functions of burnt web. To speed up the
geometric optimization process, many configurations can be
analyzed for each run.

2) Analyzing cylindrical star grain with different possibili-
ties of internal cone shaping and directly dividing the grain
into longitudinal sectors in order to better prepare the input
data for an internal ballistic computer program.
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Fig. 1a Star configuration with convex point.
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Fig. 1b Star configuration with concave poiiﬂ.

For each sector the program evaluates the burning area 4,
the wet perimeter P,, and the port area 4, as functions of
combustion web. The program is also able to evaluate the web
fraction, volumetric loading fraction, and sliver fraction for
each configuration. )

Parameter Definition and Variability

The previously mentioned seven geometric parameters R, N,
W, r\, ry, 1, and £ (or €) univocally define the star configura-
tion. However, for a complete geometric analysis the follow-
ing additional parameters have to be considered:

0N=R—W—r1
sin§

TC =ON — —r,
cosy

OT =Y, = ON (cos& +sin¢ tany)
or OT = ON cost + (TC +ry) sing
X, = TC cosy
Y. =Y, — TCsiny

FN = (ON sin£)?+ (R — ON cos§)?
FD =FN —r,
and
FA=R —-r,

for the concave point.

To exclude the star configurations not possible from the
geometric point of view or the ones not useful for ballistic
purposes, the following range of variability of the main geo-
metric parmeters are considered:

R>0, 05=<e=<l1, 35N =20
O<n<a/2, OKW<R, 0<r;<(R-WwW)
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and
O0<r,=<TC
for the convex point, or
(Y, - TC/sing)<r, <vXZ+Y?

for the concave point.

The program input are ‘‘filtered’’ by means of a subroutine,
named FILTER, in order to avoid values of the parameters out
of the ranges indicated above or that can cause interference
between star points.

For the last problem, the following observations must be
made. It was imposed that the star point should not exceed the
circular sector delimited by the angle £. Also, if this condition
eliminates some geometric configurations that are not particu-
larly interesting from the ballistic point of view, it avoids
interference between star points and simplifies the port area
evaluation. )

In case of a star with a convex point, the program imposes
that the r, circumference should not have points in common
with the line passing through O and N. The equations of the
circumference and of the line are, respectively, X2+ (Y — Y,,)?
=rfand Y =tX, where t =tan(n/2—§)=1/tan{ and Y, = Y,
—(TC - ry)/siny. Substituting the second equation for the first
one and imposing the condition of no interference (A<0, no
solution for X'), one has

Ym —raN1+12>0 4))

In case of a star with a concave point, it is imposed that the
ordinate of point B must be greater than the ordinate of point
B’ (see Fig. 1b); therefore

Y, = r, cos (2a)

or
Y, —rycosE=0 (2b)
Point B is calculated as the intersection between the circumfer-

ence of r, radius and the line starting from C with angular
coefficient m = tan(n/2 — ) = 1/tany. Therefore, Y, is given as

Y, = — Gtann ++/(G tann)?— (1 +tan2g}(G2—r2)
- 1+tan?y

3

where
G=X.—-Y./m O]

The conditions given by Eqgs. (1) and (2) assure no interference
between the star points.

Geometric Configurations

In order to analyze all of the possible star configurations,
with only the restrictions previously mentioned, a detailed ge-
ometric analysis was performed. The star configurations are
divided into two groups: stars with convex points (8 configura-
tions) and stars with concave points (8 configurations). Each
star configuration can be divided into web zones in which the
relationships for the evaluation of the geometric variables (P,
P, , A,) are constant.

In the following, all of the configurations analyzed and the
relative intervals of the geometric parameters are reported. To
avoid a paper that is too long, only the figures of the configu-
rations showing new zones are reported.

The star configurations with convex points are:

Configuration 1: (r,< TC) and (TC < W) (see Fig. 2):

0=sW.<r,, zone 1
rn=sW.<TC, zone 2
IC=W.<W, zone 3
W< W, <FD, zone 4
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Zone 3 disappears if TC=W Configuration 5: (W <r,<TC) and (W <TC <FD)
(see Fig. 5):
Configuration 2: (r,< W) and (W < TC < FD) (see Fig. 3): 0O<W.<W, zone 1
0= W.<r,, zone 1 W< W.<r,, zone 7
nw.<W, zone 2 R<W.<TC, zone 5
W=W.<TC, zone 5 TC=W.<FD, zone 4
TC=<= W.<FD, zone 4 Zone 4 disappears if TC =FD
Zone 5 disappears if 7C=W
Zone 4 disappears if 7C =FD - Configuration 6: (W <r,<CQ,) and (TC >CP,):
O=W.<W, zone 1
Configuration 3: (r,< W) and (TC > CP,) (see Fig. 4): W=<W.<r,, zone 7
0 W.<r,, zone 1 ra<W.<CQ,, zone 5
rnsWw.<w, zone 2 CQ,=W.=CP,,. zone 6
W=<W.<CQ,, zone 5 Zone 5 disappears if r,=CQ,
CQ,=W,.=CP,, zone 6
Zone 2 disappears if r,=W Configuration 7: (CQ,<r,<CP,) and (TC >CP,):
O=sW.<W, zone 1
Configuration 4: (r;=W) and (W < TC <FD): wW=Ww.<CQ,, zone 7
O<sW.<W, zone 1
W=W.<TC, zone 5
TC=W.=FD, zone 4

Zone 4 disappears if T7C =FD

Fig. 2 Star configuration 1, convex point. Fig. 4 Star configuration 3, convex point.

Fig. 3 Star configuration 2, convex. point. Fig. 5 Star configuration 5, convex point.
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Fig. 6 Star configuration 8, convex point.

CQa = Wc <r;,
rasW.<CP,,
Zone 6 disappears if r,= CP,

zone 8
zone 6

Configuration 8: (r,>CP,) and (TC > CP,) (see Fig. 6):

OsW.<W, zone 1
W< WC<CQ0’ zone 7
CQ, =< W.<BV,, zone 8
BV,< W.=< AF, zone 9

Before showing the star configurations with concave points,
some geometric considerations must be made. First of all, it is
necessary to know the curve obtained with the intersection
points between the rectilinear combustion front BC and the
circular one AB (Fig. 1b) during combustion. If this curve
intersects the segment TC, it means the rectilinear front disap-
pears and the two circular combustion fronts AB and CE come
in contact, therefore obtaining another intersection curve dur-
ing combustion. The equation of the first curve (intersection
between AB and BC) can be obtained more easily by consider-
ing new reference axes X, Y obtained by rotating the main axes
X, Y of an angle (x/2 —5) counterclockwise (Fig. 1b).

In this new system, the equation of this curve is

X2 = 2r,=Y))Y—(r2-Y,)*=0 )

where Y, is the ordinate of point Bin the new system. Clearly,
in this case only the positive value of X is of interest. Now it
is possible to know the intersection point I between this curve
and the line passing through T and C; the ordinate of this
point is

5 _th”(rz—Yb)2 )

' 2(r;—-Y,)

If ¥; is greater than Y,, it means that there is no intersection
between this curve and the segment TC, but necessarily there
will be an intersection between the curve and the main axis Y.
The abscissa value of intersection point H (Fig. 7) is evaluated
by considering the system as constituted of Eq. (5) and the

J. PROPULSION

Fig. 7 Star configuration 9, concave point.

equation of the Y axis in the new system (Y =tannX). The
abscissa is

X, = (r,— Y,)(tany + V1 +tanZy) €
and the combustion web at which this intersection occurs is
X
Wy=————-r 8
7 sin(n/2-7q) ®

On the contrary, if there is intersection between the curve and
segment 7C (it means Y;<Y,), then the combustion web at
which this intersection occurs is

Wo=Y -7, ©

In this second case, after web W,,, the combustion front is
constituted of -two arcs of circumferences which cross each
other. The curve created by these intersection points during
combustion can be determined more easily by considering a
new system of reference axes X', Y’, obtained rotating the
main axis X, Y of an angle ¢ in clockwise direction. The
equation of this curve is

X2+ (1-A)Y'2~2(ry—B)AY' — (r,—B)*=0
where
A =ON/(ry;—ry

and
(r?—rf) + ON?
p=2 U7
2(ry—ry)
This curve intersects axis Y (in the new system Y'=-X"/

tanf) at point @ (Fig. 8); the abscissa X{ is

X4=(-D-VD?>+CE)/C
where
C=1+(1-A2?)cot?f
D =A(r,—B)coté
E = (r,—B)?
The combustion web at which this intersection occurs is

W= —X§/siné — r, (10)

The values of W,;, W, and W,; are useful to define star
configurations and web zones.
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The star configurations with concave points are: W< W.<FA, zone 14
Zone 14 disappears if W, =R —r,:
Configuration 9: (TC > CP,) and (CQ, < W, < CP,)

(see Fig. 7): Configuration 16: (W,>R —ry):
O<W.<W, zone 10 0= W.<W, zone 10
W=<W.<CQ,, zone 11 W=W.<CQ,, zone 11
CQ, = W. < W,, zone 12 CQ,=W.<R-r;, zone 12
W,=sW.=<CP,, zone 6
Zone 6 disappears if W, =CP, The relationships for the evaluation of P,, P, and A, as
functions of the burnt web thickness W, are reported in the
Configuration 10: (TC >CP,) and (W, >R —r,): next section.
O0=sW.<W, zone 10
W=W.<CQ,, zone 11 Geometric Relationships
CQO,=W,<FA, zone 12

All of the geometric relationships used to calculate burning
perimeter P, , wet perimeter P,,, and port area A, as functions

Configuration 11: (W.,< Wes) and (We; < W) (see Fig. 8): of burned perimeter W, for the 14 zones previously shown are

Wof gc: Vu;fz’ ;ggz 1(3) reported in this section. No simplification of the relationships
WC 2 - Wc < WC B zone 3 are performed, in order to distinguish more simply each contri-
c3 = c s 3 :
W<W.<FD, zone 4 bution to the perimeters and port area.
Zone 3 disappears if Wy=W Zone 1:
Configuration 12: (W< W) and (W< Wi3<R —ry) _ _p _
(see Fig. 9): P,=P,=R—-W+W.)x/N-E§)
0 W.<W,, zone 10 _
Wos W.<W, zone 13 +(r+W)x/2—n+§)
W= W.<W,, zone 14 TC -
Wa<W,<R-r,,  zone4 +TC=0) G wm2—n)
Zone 4 disappears if W.;=R —r, , tany
Zone 13 disappears if W,=W R — W + W.)? + W.)2
Rk .00 sy R S A Bl ey Sy S
Configuration 13: (W< W) and (W.s3>R —ry): 2 2
0= W.<W,, zone 10 v ONY, (TC - W(:)2 (rs— Wc)2
Wo=sW.<W, zone 13 + ——— siné —
W<W,<FA, zone 14 2 2 tany 2 tany
Zone 13 disappears if W,=W (ra— W,)?
- = (x/2—7)
Configuration 14: (W< W,,) and (W.,< W3 <R —r,): 2
O=sW.<W, zone 10 Zone 2:
W= W.<W,, zone 11 )
Weo< W, < W, zone 14 b (P _
W< W,<FD, zone 4 Py =Py =(R=W+W)r/N-£)
Zone 4 disappears if W,3=R —r, (TC - W,)

+(ri+ WYX n/2—m+ &)+

Configuration 15: (W < Wu<R —r;) and (We3>R —r3): tany
O< W . <W, zone 10 R— W+ W.)? R AT
W=W.<Wpu, zone 11 A,,=(—2——i(7r/N—g)+(—‘—Ti(1r/2—n+g)
ONY, . (TC - W,)?
* 2 sing 2 tany

S

Fig. 8 Star configuration 11, concave point. Fig. 9 Star configuration 12, concave point.
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Zone 3: Zone 6:
Py =P, =(R~W—W,)x/N—-%) p, = Xs
? siny

+(r+W)x/2—n+E—7)
P, =P, + R(n/N — )

where
where
TC+"1

= -1,  0<(y+9)< .
v arc_os(rl ‘ w. cosn> K (y+m<= p = arcsin (X;/R)
. R-W+W,)? R? R TC - W, ,
Ay=-—""" (gx/N— = - Sy - ="y

P 2 (n/ £) A, 2 (w/N—p) + 2 Y; pr sing,

+ W,)?
L+ Wo) (5/2— 7+ E—7) where

2
X, = {,—n(Yp—-nX,,)

ON ‘
+ Y (ri+ We)sin(z/2+5—-£+7)

+{n2(Y, - nX,)*— (1 +n3)|(¥, -nX,,)Z—RZ]}/(l +n?)

Zone 4
Py =+ WNr/2—n+5—y—0) n =tan(x/2—-1), X,=(TC—W,)cosn
P, =Py + R(x/N—-£+p) Y, =Y, — (IC—W,_)siny
R? R R
Ap=7(W/N_E'!'B)—_20N51nﬁ Zone7:
+ W.)? _ {ITC—ry)
+m_.i_£)_(1r/2_n+g_7_0) Pb—‘("z—Wc)(ﬂ'/z"’?)'*‘_t‘an'n
+ W, +(ri+ W )w/2—n+§-0)
( 5 ) ON sin(x/2+1+£+7) (ro+ We
P, =Py, +R(x/N-£+0)
where 4 is the angle previously defined, # and 3 are the angles R2 R
shown in Flg 3 and evaluated by means of A, = > (#/N—-£+8) — B ON sinf
B=£—arcosﬁ 0<(E-B)<7 (r‘+W)2
» R’ gl 5  (w/2—q+£-6)
R
# = arcsin < sin,3> y 5
arcsi TC - W,
L + ———(TC; ™) ON sin(r/2+ 17— §) - Se— Vo) i )
where Y, is the ordinate of the intersection point Q calculated K
by means of . (12— W) (ry—-W,)?
+ — - =3 (n/2—=m)
—= 2 tann 2
Y, = A<—Yﬁ>+ o Xa Y \? A2—R? '
7 \X,/ A x,) 1+ X, (4*-R%) where the angles 6 and 3 are reported in zone 4.

Y, 2] -1 ) .
x |14+ (=F): Zone 8:
[ *(X)]

- W,
and py= s _ =W w2

sin 5 tan g
A = [R*+XE+ Y] —(ri+ Wo)P/2X,)
P, =P, + R(x/N —p)

Zone §: R? R ac-wyl
TC - W, AP:T(W/N—”)—*_EI:YI__W] sinp
Pb=(’1+Wc).(7f/2"’)+$“9)+T ‘
K NG A R el A PR
P,=P.+R(x/N-£+pf) 2 tany 2

R? : defined i 6.
A, = 7 (W/N“E+B) _ %ON sing where X; and g are defined in zone

» Zaone 9:
(r\+W.)? ONY, .
+ 2 (7/2=n+£-0) + 3 sin§ P, =(r,—-Wo)o
B (TC - W,.)? P, =P, + R(x/N—-8)
2 tany ’
R2 Y.R . (r2— W.)?
= — 66— —
where 3 and 6 are the previously defined angles. A 2 (r/N =0+ o 2 i
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where 6 and o are the angles shown in Fig. 6 and evaluated by
“ means of 6=arcos (Y,/R)

and

arcos< Y= ‘Y">
o= -
I"z - Wc

The ordinates of point U are

R+ Y2 —(r - W)?

Y, s X. = V(RZ;Yu)2‘
2Y,
Zone 10:
. C - W, i
Py= (ry+ W+ e X1
tany siny

+(r+ W a/2=n+ 8+ (R-W+ W, )x/N—-§)

P, =P,

_ (R — W+ Wc)2
- 2

(rl + Wp)2

Ay (m/N—§)+ (w/2—n+§)

w2
%]\—] (TC +ry) cos(t ~n) — Te-We)”
2 tany

i (r2 ”c)i ("'2‘ "cj Xj :
2 * 2 Siny sinfr )

+

where the dngle o and the point J are shoWn in Fig. 7.

( >
2 ”c

o . “Kcom +4 (K cotn)?~ (1 +cotm)[K 2~ (rz+ W.)?]
j= ’

(1 + cot?y)
K=Y, —(TC—-W_.)/siny
Zone 11:

ac-wy X

Py = (ry+ We)a +
tahy Stiin

+ (r1‘+ W n/2—n+E~6)

P,=P, + R(x/N-£E+DB)

R2 R ON
Ay, =— (@/N=£+B)~-= sinf
2 2
(rl + Wc)z
+ —_—
2
(TC—W.)  (ry+ W)’
- ; + a
2 tany 2

< TC - Wc) ("2 + Wc) i’
-\Yi—— si
siny 2

Yt ON

(x/2—-G+E~6) + sing

no

where 8 and 6 are defined in zone 4 and a and X, ; are defined
in zone 10.

Zone 12
X, X ..
Py = —>= - —~ 4 (ry+ W)a
siny  siny

Pw =Pb +R(7I'/N"[J.)
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R? R .
A, = 5 (/N —p) + 3 (ra+ W.) sin(u— @)

(r;+ W)
) o

where X and p are defined in zone 6 and X arid « are defined
in zone 10.

Zone 13:

Py =(ra+ Wt + (ri+ W)r, + (R = W+ W) (x/N - §)

P,=P,
W,)> ON
Ap — Q_zii__C)_ T+ —2-— (r2+ Wc) éin(E_Tl)
+ 2 R-W+W,
Sl REPEFD gy

where the point L and the angles 7,, 7, are shown in Fig. 8 and
evaluated by means of

T{ = arcos , Tp,=£&+4+ 71, 7T=arcos
r,+ Wc r+ Wc

Y= {C(Yn/Xn)

+J[C(Y,,/X,,)]‘24 [1+ (Y, /X0)?|[C?—(ra+ Wc)z]}

X [1+(Yn/X,)?] !
and
C=[(r+ W2~ (ri+ W) + X2+ Y2|/(2X,,)
Zone 14:
Py = (rat Wo)r1 + (r1 + W)(rs—6)

P,=P, +R(x/N—-£+pB)

2 . 2
A, = R‘Z-(W/N—-S+B)— -§ONsinB+ %Tl
2
+ (—”—ZK—) ON sin(t —1,) + (—’ii}Vi(n—e)

where  and B are defined in zone 4 and 7, and 7, are defined
in zone 13.

Program Structure

The program is structured with the following subroutines:

FILTER: This subroutine ‘‘filters’’ the geometric input
parameters in order to avoid geometrically impossible star
configurations or values of parameters outside the ranges pre-
viously mentioned.

CONVEX: This subroutine can analyze only the eight star
configurations with convex poirits.

CONCAVE: This subroutine can analyze the eight star con-
figurations with concave points.

These last two subroutines are structured following the s$ame
logical organization of the paragraph: geometric configura-
tions. Namely, based on the valués of the geometric parame-
ters, théy call only the subrouitines of the zones of interest.

ZONE 1 --- ZONE 14: These are 14 subroutines capable of
evaluating Py, P,,, and A4, vs the variable web burnt W.. The
relationships adopted in these subroutines are the ones re-
ported in the previous section.
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As mentioned in the Introduction, the program can run in
two different ways. In the first way, the program analyzes
exactly one star configuration at a time (or more, but sepa-
rately); therefore the program needs only the seven geometri-
cal parameters of the star and the delta-web AW, for which P,,
P, and 4, have to be evaluated. Clearly, whatever AW, may
be, the program always gives the values of Py, P,,, and A, for
the values of W, where a transition from one zone to another
occurs; for example for W, =W or W, =TC, etc. In the sec-
ond case, the input is the grain length and the values of the
seven geometrical parameters along the grain. For example, if
the grain has a constant star perforation, only one set of the
seven geometrical parameters is necessary. If the grain is inter-
nally tapered, it is necessary to give the constant grain outside
radius R and two sets of the remaining six parameters only at
the beginning and at the end of the tapered zone.

In the same way, if the grain has different tapered zones
(two in Fig. 10), the six parameters must be given to the pro-
gram only at the stations along the grain axis where the cone-
shape changes (at stations 1, 2, and 3 of Fig. 10).

The number of longitudinal sectors in which the star grain
should be subdivided must be specified in order to prepare the
output in such a way as to be directly used as input of the
internal ballistic program (in Fig. 10 the grain is subdivided
into seven longitudinal sectors). For each longitudinal sector
the program calculates the burning area 4 ,, as product of the
Py, (evaluated in the middle of the sector) and the sector length,
the wet perimeter, and port area at each delta increase of the
web. Clearly, if the grain is internally tapered, the values of
P,, P,, and A, in the middle of each sector are evaluated
considering a star with the six parameters obtained by means
of linear interpolation between the values of the sector extrem-
ities. In this case, the evaluated values are approximated, but
according to our experience, if the cone semiangle is less than
10-15 deg the error on A, is less than 1-2%. However, from
the geometric point of view, it is useful to increase the number
of longitudinal sectors in the tapered zone in order to reduce
the error on the evaluated parameters, especially concerning
the total combustion web and the total propellant weight.

J. PROPULSION

Conclusions

_ The described star program is able to evaluate exactly the
geometrical evolution of a cylindric star grain. If there is a
variation of the seven geometrical parameters along the grain
axis, the solutions have to be considered as approximated.
But, if the cone $emiangle is less than 10-15 deg, the error in
Ay is less than 1-2%.

The program output is organized in a file that can be directly
used for the subsequent internal ballistic analysis. The pro-
gram is provided with a postprocessor capable of drawing, by
means of a plotter, the star configuration vs W, and the dia-
grams of P, (or the burning surface), P,,, and A, as functions
of W,. It is also capable of evaluating the web fraction, the
volumetric loading fraction, and sliver fraction. Since the pro-
gram can analyze a large number of star configurations in little

- time, it is particularly suited for geometrical optimization of

the grain. For example, an optimization process that involves
the calculation of 100 configurations or, equivalently, a star
grain divided in 100 longitudinal sectors, will take 10 or 30 min
of CPU time (IBM 3090) depending on the selected delta web.
Frequently, in engineering practice it is not fundamental to
have a neutral burning star, but is can be necessary to have a
star with a small sliver fraction (for example, the booster of
Ariane 3), or a large initial burning surface (as for some micro-
rocket igniters), or a star grain with a high volumetric loading
fraction (as for space motor), and so on.

These requirements can be satisfied only by means of an
optimization process that can be speedy and efficient only by
using a computer program.

For the program validation, 15 star configurations were
drawn on a very large scale. The values of P,, P,, and A4, vs
W, directly measured on the drawings are in perfect accor-
dance with the calculated values.
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